Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Nutr Biochem ; 124: 109511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37913969

RESUMO

Protein malnourishment (PM) is common among the elderly, but how aging and PM impact hematopoiesis is not fully understood. This study aimed to assess how aging and PM affect the hematopoietic regulatory function of bone marrow (BM) mesenchymal stem cells (MSCs). Young and aged male C57BL/6J mice were fed with normoproteic or hypoproteic diets and had their nutritional, biochemical, and hematological parameters evaluated. BM MSCs were characterized and had their secretome, gene expression, autophagy, reactive oxygen species production (ROS), and DNA double-stranded breaks evaluated. The modulation of hematopoiesis by MSCs was assayed using in vitro and in vivo models. Lastly, BM invasiveness and mice survival were evaluated after being challenged with leukemic cells of the C1498 cell line. Aging and PM alter biochemical parameters, changing the peripheral blood and BM immunophenotype. MSC autophagy was affected by aging and the frequencies for ROS and DNA double-stranded breaks. Regarding the MSCs' secretome, PM and aging affected CXCL12, IL-6, and IL-11 production. Aging and PM up-regulated Akt1 and PPAR-γ while down-regulating Cdh2 and Angpt-1 in MSCs. Aged MSCs increased C1498 cell proliferation while reducing their colony-forming potential. PM and aging lowered mice survival, and malnourishment accumulated C1498 cells at the BM. Finally, aged and/or PM MSCs up-regulated Sox2, Nanog, Pou5f1, and Akt1 expression while down-regulating Cdkn1a in C1498 cells. Together, aging and PM can induce cell-intrinsic shifts in BM MSCs, creating an environment that alters the regulation of hematopoietic populations and favoring the development of malignant cells.


Assuntos
Desnutrição , Células-Tronco Mesenquimais , Humanos , Idoso , Masculino , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Hematopoese , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Desnutrição/metabolismo , DNA/metabolismo
2.
Nutr Res ; 116: 12-23, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37320947

RESUMO

Protein restriction (PR) leads to bone marrow hypoplasia with changes in stromal cellularity components of the extracellular matrix in hematopoietic stem cells (HSCs). However, the underlying signaling mechanisms are poorly understood. We hypothesize that PR impairs the HSC mitogen-activated protein kinase (MAPK) signaling pathway response activation. Our aim is to evaluate the activation of MAPK and interleukin-3 (IL-3) proteins in HSC to explain PR-induced bone marrow hypoplasia, which causes altered proliferation and differentiation. C57BL/6 male mice were subjected to a low-protein diet (2% protein) or normoproteic (12% protein). PKC, PLCγ2, CaMKII, AKT, STAT3/5, ERK1/2, JNK, and p38d phosphorylation were evaluated by flow cytometry, and GATA1/2, PU.1, C/EBPα, NF-E2, and Ikz-3 genes (mRNAs) assessed by quantitative real-time-polymerase chain reaction. Pathway proteins, such as PLCγ2, JAK2, STAT3/5, PKC, and RAS do not respond to the IL-3 stimulus in PR, leading to lower activation of ERK1/2 and Ca2+ signaling pathways, consequently lowering the production of hematopoietic transcription factors. Colony forming units granulocyte-macrophage and colony forming units macrophage formation are impaired in PR even after being stimulated with IL-3. Long-term hematopoietic stem cells, short-term hematopoietic stem cells, granulocyte myeloid progenitor, and megakaryocyte-erythroid progenitor cells were significantly reduced in PR animals. This study shows for the first time that activation of MAPK pathway key proteins in HSCs is impaired in cases of PR. Several pathway proteins, such as PLCγ2, JAK2, STAT3, PKC, and RAS do not respond to IL-3 stimulation, leading to lower activation of extracellular signal-regulated protein kinase 1/2 and consequently lower production of hematopoietic transcription factors GATA1/2, PU.1, C/EBPa, NF-E2, and Ikz3. These changes result in a reduction in colony-forming units, proliferation, and differentiation, leading to hypocellularity.


Assuntos
Dieta com Restrição de Proteínas , Células-Tronco Hematopoéticas , Proteínas Quinases Ativadas por Mitógeno , Animais , Masculino , Camundongos , Interleucina-3 , Camundongos Endogâmicos C57BL , Fosfolipase C gama , Transdução de Sinais , Fatores de Transcrição
3.
Exp Gerontol ; 171: 112025, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372284

RESUMO

Malnutrition is considered one of the most common problems in the elderly population worldwide and can significantly interfere in health evolution in these individuals, predisposing them to increased infection susceptibility. The immune response triggered by infections comprises several mechanisms, and macrophages play important roles in this response. This study aimed to evaluate mechanisms related to macrophage function in a model of protein malnutrition in the elderly. Two age groups (young: 3-5 months and elderly: 18-19 months) male C57BL/6NTac mice were subjected to protein malnutrition with a low-protein diet (2 %). The nutritional status, hemogram and number of peritoneal cells were affected by both age and nutritional status. Additionally, the spreading capacity as well as the phagocytic and fungicidal activity of peritoneal macrophages were affected by the nutritional status and age of the animal. Interestingly, the percentages of F4/80+/CD11b+ and CD86+ cells were reduced mostly in elderly animals, while the TLR-4+ population was more affected by nutritional status than by age. The production of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-6 was also influenced by nutritional status and/or by age, and malnourished animals of advanced age produced higher amounts of the anti-inflammatory cytokine IL-10. Furthermore, the phosphorylation ratio of the transcription factor NFκB (pNFκB/NFκB) was directly affected by the nutritional status, independently of age. Thus, these results allow us to conclude that aging and protein malnutrition compromise macrophage function, likely affecting their immune function, and in aged protein-malnourished animals, this impairment tends to be more pronounced.


Assuntos
Macrófagos Peritoneais , Desnutrição , Idoso , Humanos , Camundongos , Masculino , Animais , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Nutrition ; 105: 111853, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335873

RESUMO

OBJECTIVE: Anthocyanins are polyphenols that are promising chemopreventive agents. They stand out for their anti-inflammatory properties, with specific modulatory actions on the immune system. Additionally, regarding the immune system, a group of cells identified as mesenchymal stem cells (MSCs) have been attracting attention, mainly because of their capacity to migrate to sites of inflammation and produce potent immunomodulatory effects. Considering the ability of these cells to act on the immune system, as well as the properties of anthocyanins, especially delphinidin, in modulating the immune system, the aim of this study was to investigate the effects of delphinidin in influencing some immunoregulatory properties of MSCs. METHODS: MSCs were cultivated in the presence of delphinidin 3-O-ß-d-glycoside and cell viability, the cell cycle and the production of soluble factors (interleukin [IL]-1ß, IL-6, IL-10, transforming growth factor [TGF]-ß, prostaglandin E2 [PGE2] and nitric oxide [NO]) were evaluated, as was the expression of the transcription factors nuclear factor (NF)-κB and STAT3. Additionally, the effects of conditioned media from MSCs on macrophage activation were assessed. RESULTS: Delphinidin at 50 µM does not affect cell viability. In association with lipopolysaccharide, delphinidin was able to induce MSC proliferation. Additionally, delphinidin modulated the MSC immune response, showing increased levels of anti-inflammatory cytokines such as IL-10 and TGF-ß as well as lower expression of NF-κB. Furthermore, conditioned media from MSCs inhibited macrophage metabolism, reducing the production of IL-1ß, IL-12, and TNF-α and increasing IL-10. CONCLUSIONS: Overall, this work showed that delphinidin can modify the immunomodulatory properties of MSCs, increasing the IL-10 production by macrophages.


Assuntos
Antocianinas , Células-Tronco Mesenquimais , Antocianinas/farmacologia , NF-kappa B/metabolismo , Ativação de Macrófagos , Interleucina-10/metabolismo , Meios de Cultivo Condicionados/farmacologia , Secretoma , Anti-Inflamatórios/farmacologia , Glucosídeos/farmacologia
5.
Eur J Nutr ; 61(7): 3391-3406, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35508740

RESUMO

PURPOSE: Dietary protein deficiency is common in the elderly, compromising hematopoiesis and the immune response, and may cause a greater susceptibility to infections. Mesenchymal stem cells (MSCs) have immunomodulatory properties and are essential to hematopoiesis. Therefore, this study aimed to investigate, in an aging model subjected to malnutrition due a reduced protein intake, aspects related to the immunomodulatory capacity of MSCs. METHODS: Male C57BL/6 mice from young and elderly groups were fed with normoproteic or hypoproteic diets (12% and 2% of protein, respectively) and nutritional, biochemical and hematological parameters were evaluated. MSCs from bone marrow were isolated, characterized and their secretory parameters evaluated, along with gene expression. Additionally, the effects of aging and protein malnutrition on MSC immunomodulatory properties were assessed. RESULTS: Malnourished mice lost weight and demonstrated anemia, leukopenia, and bone marrow hypoplasia. MSCs from elderly animals from both groups showed reduced CD73 expression and higher senescence rate; also, the malnourished state affected CD73 expression in young animals. The production of IL-1ß and IL-6 by MSCs was affected by aging and malnutrition, but the IL-10 production not. Aging also increased the expression of NFκB, reducing the expression of STAT-3. However, MSCs from malnourished groups, regardless of age, showed decreased TGF-ß and PGE2 production. Evaluation of the immunomodulatory capacity of MSCs revealed that aging and malnutrition affected, mainly in lymphocytes, the production of IFN-γ and IL-10. CONCLUSION: Aging and reduced protein intake are factors that, alone or together, influence the immunomodulatory properties of MSCs and provide basic knowledge that can be further investigated to explore whether MSCs' therapeutic potential may be affected.


Assuntos
Células-Tronco Mesenquimais , Deficiência de Proteína , Envelhecimento , Animais , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Imunidade , Interleucina-10/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Int J Radiat Biol ; : 1-11, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35394402

RESUMO

Purpose: This study aimed to evaluate the radiation-induced direct and bystander (BYS) responses of mesenchymal stem cells (MSCs) and to characterize these cells radiobiologically.Methods and materials: MSCs were irradiated (IR) and parameters related to DNA damage and cellular signaling were verified in a dose range from 0.5 to 15 Gy; also a transwell insert co-culture system was used to study medium-mediated BYS effects.Results: The main effects on directly IR cells were seen at doses higher than 6 Gy: induction of cell death, cell cycle arrest, upregulation of p21, and alteration of redox status. Irrespective of a specific dose, induction of micronuclei formation, H2AX phosphorylation, and decreased Akt expression also occurred. Thus, mTOR expression, cell senescence, nitric oxide generation, and calcium levels, in general were not significantly modulated by radiation. Data from the linear-quadratic model showed a high alpha/beta ratio, which is consistent with a more exponential survival curve. BYS effects from the unirradiated MSCs placed into companion wells with the directly IR cells, were not observed.Conclusions: The results can be interpreted as a positive outcome, meaning that the radiation damage is restricted to the directed IR MSCs not leading to off-target cell responses.

7.
J Nutr Biochem ; 93: 108626, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33705953

RESUMO

Protein malnutrition causes anemia and leukopenia as it reduces hematopoietic precursors and impairs the production of mediators that regulate hematopoiesis. Hematopoiesis occurs in distinct bone marrow niches that modulate the processes of differentiation, proliferation and self-renewal of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) contribute to the biochemical composition of bone marrow niches by the secretion of several growth factors and cytokines, and they play an important role in the regulation of HSCs and hematopoietic progenitors. In this study, we investigated the effect of protein malnutrition on the hematopoietic regulatory function of MSCs. C57BL/6NTaq mice were divided into control and protein malnutrition groups, which received, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). The results showed that protein malnutrition altered the synthesis of SCF, TFG-ß, Angpt-1, CXCL-12, and G-CSF by MSCs. Additionally, MSCs from the protein malnutrition group were not able to maintain the lymphoid, granulocytic and megakaryocytic-erythroid differentiation capacity compared to the MSCs of the control group. In this way, the comprehension of the role of MSCs on the regulation of the hematopoietic cells, in protein malnutrition states, is for the first time showed. Therefore, we infer that hematopoietic alterations caused by protein malnutrition are due to multifactorial alterations and, at least in part, the MSCs' contribution to hematological impairment.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Proteínas na Dieta/administração & dosagem , Hematopoese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Deficiência de Proteína/metabolismo , Animais , Células da Medula Óssea/fisiologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Hematopoese/fisiologia , Leucócitos Mononucleares/fisiologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA/efeitos dos fármacos , RNA/genética , RNA/metabolismo
8.
Amino Acids ; 53(4): 597-607, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33715068

RESUMO

Although branched-chain amino acids (BCAA) are commonly used as a strategy to recover nutritional status of critically ill patients, recent findings on their role as immunonutrients have been associated with unfavorable outcomes, especially in obese patients. The present study aimed to explore the effects of different BCAA supplementation protocols in the inflammatory response of LPS-stimulated RAW 264.7 macrophages. Cell cultures were divided into five groups, with and without BCAA supplementation, (2 mmol/L of each amino acid). Then, cell cultures followed three different treatment protocols, consisting of a pretreatment (PT), an acute treatment (AT), and a chronic treatment (CT) with BCAA and LPS stimulation (1 µg/mL). Cell viability was analyzed by MTT assay, NO production was assessed by the Griess reaction and IL-6, IL-10, TNF-α and PGE2 synthesis, was evaluated by ELISA. BCAA significantly increased cell viability in AT and CT protocols, and NO and IL-10 synthesis in all treatment protocols. IL-6 synthesis was only increased in PT and CT protocols. TNF-α and PGE2 synthesis were not altered in any of the protocols and groups. BCAA supplementation was able to increase both pro and anti-inflammatory mediators synthesis by RAW 264.7 macrophages, which was influenced by the protocol applied. Moreover, these parameters were significantly increased by isoleucine supplementation, highlighting a potential research field for future studies.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Inflamação , Macrófagos/imunologia , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7
9.
Appl Microbiol Biotechnol ; 105(1): 169-183, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201277

RESUMO

The granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that has important clinical applications for treating neutropenia. Nartograstim is a recombinant variant of human G-CSF. Nartograstim has been produced in Escherichia coli as inclusion bodies (IB) and presents higher stability and biological activity than the wild type of human G-CSF because of its mutations. We developed a production process of nartograstim in a 10-L bioreactor using auto-induction or chemically defined medium. After cell lysis, centrifugation, IB washing, and IB solubilization, the following three refolding methods were evaluated: diafiltration, dialysis, and direct dilution in two refolding buffers. Western blot and SDS-PAGE confirmed the identity of 18.8-kDa bands as nartograstim in both cultures. The auto-induction medium produced 1.17 g/L and chemically defined medium produced 0.95 g/L. The dilution method yielded the highest percentage of refolding (99%). After refolding, many contaminant proteins precipitated during pH adjustment to 5.2, increasing purity from 50 to 78%. After applying the supernatant to cation exchange chromatography (CEC), nartograstim recovery was low and the purity was 87%. However, when the refolding solution was applied to anion exchange chromatography followed by CEC, 91%-98% purity and 2.2% recovery were obtained. The purification process described in this work can be used to obtain nartograstim with high purity, structural integrity, and the expected biological activity. KEY POINTS: • Few papers report the final recovery of the purification process from inclusion bodies. • The process developed led to high purity and reasonable recovery compared to literature. • Nartograstim biological activity was demonstrated in mice using a neutropenia model.


Assuntos
Antibacterianos , Escherichia coli , Fator Estimulador de Colônias de Granulócitos/biossíntese , Animais , Escherichia coli/genética , Humanos , Camundongos , Proteínas Recombinantes/biossíntese
10.
Appl Microbiol Biotechnol, v. 105, p. 169-183, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3345

RESUMO

The granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that has important clinical applications for treating neutropenia. Nartograstim is a recombinant variant of human G-CSF. Nartograstim has been produced in Escherichia coli as inclusion bodies (IB) and presents higher stability and biological activity than the wild type of human G-CSF because of its mutations. We developed a production process of nartograstim in a 10-L bioreactor using auto-induction or chemically defined medium. After cell lysis, centrifugation, IB washing, and IB solubilization, the following three refolding methods were evaluated: diafiltration, dialysis, and direct dilution in two refolding buffers. Western blot and SDS-PAGE confirmed the identity of 18.8-kDa bands as nartograstim in both cultures. The auto-induction medium produced 1.17 g/L and chemically defined medium produced 0.95 g/L. The dilution method yielded the highest percentage of refolding (99%). After refolding, many contaminant proteins precipitated during pH adjustment to 5.2, increasing purity from 50 to 78%. After applying the supernatant to cation exchange chromatography (CEC), nartograstim recovery was low and the purity was 87%. However, when the refolding solution was applied to anion exchange chromatography followed by CEC, 91%-98% purity and 2.2% recovery were obtained. The purification process described in this work can be used to obtain nartograstim with high purity, structural integrity, and the expected biological activity.

11.
Braz. J. Pharm. Sci. (Online) ; 57: e19043, 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1345451

RESUMO

This study aimed to identify variables associated with the appropriate recall of indications and the drug classes that represented the most unmatching medications (i.e., when the individual who used it had not reported any illness that matched its indications). Community-dwelling individuals aged ≥60 years using ≥1 medication, from Santa Cruz da Esperança-SP, Brazil, were home-interviewed. Logistic regression models were used to evaluate the association between the appropriate recall of the indications for all medications in use and the following: gender, age, education, individual income, living arrangement, self-perceived health, and medication number, administration, payment, and identification. Medications whose indications were inappropriately recalled were classified as matching or unmatching. One hundred seventeen individuals used an average of 5.1 (standard deviation, 3.3) medications. Sixty-one (52.1%) appropriately recalled all indications. The appropriate recall of all indications was negatively associated with the number of medications in use (e.g., individuals taking 5-6 medications were 25 times less likely to appropriately recall all indications than those taking 1-2). Antithrombotic, acid-related disorder and psychoanaleptic classes showed greater frequencies of unmatching than matching medications. Therefore, counseling the elderly about drug indications should focus on those using ≥3 medications and/or antithrombotic, acid-related disorder, and psychoanaleptic agents.


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Organização Mundial da Saúde , Idoso/fisiologia , Preparações Farmacêuticas/administração & dosagem , Modelos Logísticos , Características de Residência/classificação , Educação de Pacientes como Assunto/classificação , Aconselhamento/ética , Renda
12.
Artigo em Inglês | MEDLINE | ID: mdl-33242781

RESUMO

In the last decade, mesenchymal stem cells (MSCs) have been gaining attention due their ability to influence the function of other cells as well as modulate the inflammatory response. This occurs via their immunomodulatory functions,  acting through direct cell-cell interaction or by releasing a broad spectrum of bioactive factors such as cytokines and growth factors. In addition, prostaglandins are arachidonic acid metabolites that play a key role in the generation and modulation of the inflammatory response. Among the bioactive prostaglandins, PGF2α is able to stimulate cell proliferation as well as act to inhibit progenitor cell differentiation, but no information about this prostaglandin's action on the immunoregulatory function of MSCs has been reported. In this study we evaluate important aspects of the influence of PGF2α analog (17-phenyl-trinor PGF2α), which is a potent prostaglandin FP receptor agonist, on some mechanisms that control the main functions of MSCs. C3H10T1/2, a mesenchymal stem cell linage, was stimulated with PGF2α under inflammatory conditions trigged by LPS in order to investigate PGF2α inflammatory parameters as well as its ability to immunoregulate macrophages and lymphocytes. PGF2α has the ability to increase proliferation tax without altering the cell viability of LPS-stimulated MSCs, while also diminishing the phosphorylation of NFκB transcription factor leading to attenuation of IL-1ß and GM-CSF production. Additionally, MSC-s conditioned media from cells stimulated with PGF2α was able to increase the lymphocytes' IL-10 production. Overall, this study implied that PGF2α are able to modify some properties of MSCs.


Assuntos
Dinoprosta/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Imunomodulação/efeitos dos fármacos , Interleucina-1beta/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/patologia , Camundongos
13.
Nutrition ; 78: 110935, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799043

RESUMO

OBJECTIVES: The essential branched chain amino acids (BCAAs) valine, leucine, and isoleucine, are widely studied because of their effects on immunity and metabolism. Mesenchymal stem cells (MSCs) are a type of cell also studied due to their immunomodulatory properties. Since both BCAAs and MSCs have immunomodulatory capacity, the objective of this study was to evaluate the influence of BCAAs on some immunomodulatory aspects of MSCs. METHODS: MSCs were cultivated in BCAA-supplemented media to evaluate metabolic activity, including cell cycle, proliferative nuclear cell antigen, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, avian myelocytomatosis viral oncogene homolog, peroxisome proliferator activated receptor gamma, nuclear factor kappa B (NFкB), and signal transducers and activators of transcription 3 (STAT-3) expression. Additionally, some inflammatory mediators' synthesis, such as interleukin (IL) 1-beta, IL-10, granulocyte-macrophage colony-stimulating factor, transforming growth factor beta, nitric oxide, and prostaglandin E2, were also evaluated. RESULTS: Supplementation with BCAA led not only to increased MSC proliferation with more cells in the S, G2, and M cycle phases, but also to increased metabolic activity. BCAA supplementation also altered the immunomodulatory capacity of MSCs by decreasing the p-NFкB/NFкB and increasing the p-STAT-3/STAT-3 gene expression ratios, in addition to increasing synthesis of the antiinflammatory mediators transforming growth factor beta and prostaglandin E2. Finally, MSCs cultivated in BCAA-supplemented media was shown to decrease the IL-6 and tumor necrosis factor alpha production by macrophages. CONCLUSIONS: BCAA supplementation affected some immunoregulatory aspects of MSCs.


Assuntos
Células-Tronco Mesenquimais , NF-kappa B , Aminoácidos de Cadeia Ramificada , Proliferação de Células , Imunomodulação
14.
Sci Rep ; 10(1): 7235, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350311

RESUMO

The demand for animal protein for human consumption has been risen exponentially. Modern animal production practices are associated with the regular use of antibiotics, potentially increasing the emerging multi-resistant bacteria, which may have a negative impact on public health. In poultry production, substances capable of maximizing the animals' performance and displaying an antimicrobial activity against pathogens are very well desirable features. Probiotic can be an efficient solution for such a task. In the present work, lactic acid bacteria (LAB) were isolated from chicken cecum and screened for their antagonistic effect towards many pathogens. Their capacity of producing the B-complex vitamins folate and riboflavin were also evaluated. From 314 isolates, three (C43, C175 and C195) produced Bacteriocin-Like Inhibitory Substances (BLIS) against Staphylococcus aureus (inhibition zones of 18.9, 21.5, 19.5 mm, respectively) and also inhibited the growth of Salmonella Heidelberg. The isolate C43 was identified as Enterococcus faecium, while C173 and C195 were both identified as Lactococcus lactis subsp. lactis. Moreover, the isolates L. lactis subsp. lactis strains C173 and C195 demonstrated high potential to be used as probiotic in poultry feed, in addition to their advantage of producing folate (58.0 and 595.5 ng/mL, respectively) and riboflavin (223.3 and 175.0 ng/mL, respectively).


Assuntos
Ração Animal/microbiologia , Antibacterianos/farmacologia , Galinhas , Probióticos/farmacologia , Salmonella enterica/crescimento & desenvolvimento , Complexo Vitamínico B/farmacologia , Animais , Bioprospecção
15.
Br J Nutr ; 123(10): 1094-1108, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32172712

RESUMO

The present study reports the effects of a high-fat (HF) diet of over 8 weeks on the Fe status of growing rats. Tissue Fe levels were analysed by atomic absorption spectrophotometry, and whole-body adiposity was measured by dual-energy X-ray absorptiometry. Histopathology and morphometry of adipose tissue were performed. Liver homogenates were used for measuring ferroportin-1 protein levels by immunoblotting, and transcript levels were used for Fe genes measured by real-time PCR. Tissue Fe pools were fit to a compartmental biokinetic model in which Fe was assessed using fourteen compartments and twenty-seven transfer constants (kj,i from tissue 'i' to tissue 'j') adapted from the International Commission on Radiological Protection (ICRP) 69. Ten kj,i were calculated from the experimental data using non-linear regression, and seventeen were estimated by allometry according to the formula ${k_{i,j}} = a \times {M^b}$. Validation of the model was carried out by comparing predicted and analysed Fe pool sizes in erythrocytes, the liver and the spleen. Body adiposity was negatively associated with serum Fe levels and positively associated with liver Fe stores. An inferred increase in Fe transfer from bone marrow to the liver paralleled higher hepatic Fe concentrations and ferritin heavy-chain mRNA levels in the HF diet-fed animals, suggesting that liver Fe accumulation occurred at least in part due to a favoured liver erythrocyte uptake. If this feeding condition was to be prolonged, impaired Fe decompartmentalisation may occur, ultimately resulting in dysmetabolic Fe overload.


Assuntos
Adiposidade , Dieta Hiperlipídica/efeitos adversos , Sobrecarga de Ferro/etiologia , Ferro/metabolismo , Absorciometria de Fóton , Animais , Proteínas de Transporte de Cátions/análise , Modelos Animais de Doenças , Fígado/metabolismo , Ratos , Baço/metabolismo
16.
Clin Nutr ; 39(5): 1551-1559, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31326233

RESUMO

BACKGROUND & AIMS: Protein malnutrition (PM) affects hematopoiesis leading to bone marrow (BM) hypoplasia and arrests hematopoietic stem cells (HSC) in G0/G1 cell cycle phases, which cause anemia and leukopenia. Hematopoiesis is mainly regulated by BM niches where endothelial cells (EC) present a key regulatory role. Thus, our objective is to evaluate whether PM affects the modulatory capacity of EC on hematopoiesis. METHODS: C57BL/6 male mice received for 5 weeks a normal protein diet (12% casein) or a low protein diet (2% casein). MSC were isolated and differentiated in vitro into EC and the synthesis of SCF, Ang-1, CXCL-12, IL-11, TGF-ß and G-CSF were evaluated. The HSC and hematopoietic progenitors were quantified and the EC capacity to modulate the hematopoietic system was also evaluated. Moreover, the ability of PM bone marrow to support hematopoieisis was assessed by proliferation of infused leukemic myelo-monoblasts cells. RESULTS: PM decreases HSC and hematopoietic progenitor pool and promotes cell cycle arrest and a lower proliferation rate of leukemic myelo-monoblasts. PM also committed hematopoietic regulatory characteristics from EC, resulting in the modification of both cell cycle pattern and hematopoietic differentiation. CONCLUSION: BM microenvironment is compromised in PM, and since PM disturbs EC, it becomes one of the factors responsible for the hematopoietic cell cycle arrest and impairment of HSC differentiation.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Proteínas na Dieta/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Hematopoese/efeitos dos fármacos , Deficiência de Proteína , Anemia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Dieta , Leucopenia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
17.
Nutrition ; 69: 110540, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525700

RESUMO

OBJECTIVE: It is well known that protein malnutrition (PM) states can affect hematopoiesis, leading to severe leukopenia and reduced number of granulocytes, which act as the first line of defense, and are important to the innate immune response. The aim of this study was to elucidate some of the mechanisms involved in the impairment of granulopoiesis in PM. METHODS: Male C57BL/6 mice were submitted to PM with a low-protein diet containing 2% protein. Control mice were fed a 12% protein-containing diet. Bone marrow histology and the percentage of granulocytic progenitors were evaluated after in vivo granulocyte-colony stimulating factor (G-CSF) stimulus. Cell proliferation, STAT3 signaling, and the expression of G-CSF receptor were evaluated in hematopoietic progenitor cells. RESULTS: Malnourished animals presented with leukopenia associated with reduced number of granulocytes and reduced percentage of granulocytic progenitors; however, no differences were observed in the regulatory granulopoietic cytokine G-CSF. Additionally, the malnourished group presented with impaired response to in vivo G-CSF stimulus compared with control animals. PM was implicated in decreased ability of c-Kit+ cells to differentiate into myeloid progenitor cells and downregulated STAT3 signaling. Furthermore, the malnourished group exhibited reduced expression of G-CSF receptor on granule-monocytic progenitors. This reduced expression was not completely reversible with G-CSF treatment. CONCLUSIONS: This study implies that PM promotes intrinsic alterations to hematopoietic precursors, which result in hematologic changes, mainly neutropenia, observed in peripheral blood in PM states.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Células Precursoras de Granulócitos/metabolismo , Neutropenia/sangue , Deficiência de Proteína/sangue , Receptores de Fator Estimulador de Colônias de Granulócitos/sangue , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutropenia/etiologia , Deficiência de Proteína/etiologia
18.
Amino Acids ; 51(3): 451-462, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30449005

RESUMO

Glutamine (GLN) is the most abundant free amino acid in the body, and is considered as a conditionally essential amino acid under stress conditions, acting as an important modulator of the immune response. We here investigated the role of exogenous GLN treatment on leukocyte migration after the onset of endotoxemia and the intracellular mechanisms of GLN actions on neutrophils. Two in vivo models of endotoxemia caused by lipopolysaccharide of Escherichia coli (LPS) injection were carried out in male outbred Balb/C mice 2-3 months old, as follow: (1) LPS (50 µg/kg) was intravenously injected 1 h prior to intravenous injection of GLN (0.75 mg/kg) and samples were collected 2 h later to investigate the role of GLN on the acute lung inflammation; (2) LPS (1 mg/kg) was intraperitoneally injected 1 h prior to intravenous injection of GLN (0.75 mg/kg) and samples were collected 18 h later to measure the effects of GLN on local and later phases of inflammation in the peritoneum. Results showed that GLN administration reduced the number of neutrophils in the inflamed lungs, partially recovery of the reduced number of leukocytes in the blood; reduced adhesion molecules on lung endothelium and on circulating neutrophils. Moreover, GLN treatment diminished the number of neutrophils, levels of chemotactic cytokine CXCL2 in the inflamed peritoneum, and neutrophils collected from the peritoneum of GLN-treated mice presented lower levels of Rho, Rac, and JNK. Together, our data show novel mechanisms involved in the actions of GLN on neutrophils migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Endotoxemia/tratamento farmacológico , Glutamina/administração & dosagem , Lipopolissacarídeos/toxicidade , Neutrófilos/efeitos dos fármacos , Peritônio/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Regulação da Expressão Gênica , Glutamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Peritônio/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia
19.
Braz. J. Pharm. Sci. (Online) ; 55: e17561, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1039065

RESUMO

Obesity is a chronic inflammatory disease that affects millions of people worldwide. Most studies observe the effects of a high-fat diet (HFD) in 10-12 weeks. This work investigated the effects induced by a HFD administered for 6 weeks on the nutritional status of mice and some aspects of the inflammatory response in mouse peritoneal macrophages. Male Swiss Webster mice, 2-3 months of age, were fed a control diet or HFD for 6 weeks. After this period, the mice were euthanized, and peritoneal macrophages were collected for immunoassays and assessment of biochemical parameters. A HFD was associated with increased cholesterol, insulin resistance, C-reactive protein (CRP), leptin, and serum resistin levels. Lipopolysaccharide (LPS)- stimulated adipocyte cultures of animals subjected to a HFD showed increased production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). However, peritoneal macrophages of the HFD group showed no changes in the levels of these cytokines. LPS-stimulated peritoneal macrophages from HFD-treated animals showed a reduction in mRNA expression of TNF-α and IL-6, as well as a decrease in expression of the transcription factor nuclear factor-kappa B (NF-kB). In conclusion, HFD treatment for 6 weeks induces similar signs to metabolic syndrome and decreases the capacity of peritoneal macrophages to develop an appropriate inflammatory response to a bacterial component


Assuntos
Animais , Masculino , Camundongos , Macrófagos Peritoneais/classificação , Dieta Hiperlipídica/efeitos adversos , NF-kappa B/farmacocinética , Síndrome Metabólica
20.
Nutr Res Rev ; 31(2): 267-280, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29983125

RESUMO

Micronutrients are indispensable for adequate metabolism, such as biochemical function and cell production. The production of blood cells is named haematopoiesis and this process is highly consuming due to the rapid turnover of the haematopoietic system and consequent demand for nutrients. It is well established that micronutrients are relevant to blood cell production, although some of the mechanisms of how micronutrients modulate haematopoiesis remain unknown. The aim of the present review is to summarise the effect of Fe, Mn, Ca, Mg, Na, K, Co, iodine, P, Se, Cu, Li and Zn on haematopoiesis. This review deals specifically with the physiological requirements of selected micronutrients to haematopoiesis, showing various studies related to the physiological requirements, deficiency or excess of these minerals on haematopoiesis. The literature selected includes studies in animal models and human subjects. In circumstances where these minerals have not been studied for a given condition, no information was used. All the selected minerals have an important role in haematopoiesis by influencing the quality and quantity of blood cell production. In addition, it is highly recommended that the established nutrition recommendations for these minerals be followed, because cases of excess or deficient mineral intake can affect the haematopoiesis process.


Assuntos
Células Sanguíneas/metabolismo , Hematopoese/efeitos dos fármacos , Minerais/farmacologia , Necessidades Nutricionais , Oligoelementos/farmacologia , Animais , Deficiências Nutricionais/complicações , Humanos , Estado Nutricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...